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Abstract

This paper describes an approximation for the one-
dimensional Discrete Fourier Transform of Irregularly
Sampled functions and its inverse. The discrete spec-
trum of one-dimensional discrete functions is then es-
timated within the range of validity of this approxima-
tion. The errors involved are estimated in a rather em-
pirical way and some synthetic examples are shown.
The extension of this approach for multidimensional
functions’ spectra estimation is straightforward and its
applicability for higher dimension interpolation prob-
lems is outlined.

Introduction

Interpolation of multidimensional functions has gained
much attention recently with applications in seismic data
regularization for many different purposes. Many are the
models used for mapping and reconstructing the acquired
data with great differences in the quality of the interpo-
lation achieved. From a long list of models, those with
a more physical base tend to produce more acceptable
results being Fourier mapping one of the most used ap-
proaches. However, given the irregular disposition of data,
the Fourier spectrum evaluation problem is rarely a mathe-
matically well posed one and virtually never counts on a es-
tablished and efficient routine like Fast Fourier Transforms
(*). Many are then the alternatives for handling the difficul-
ties to implement a procedure that faces the trade off be-
tween the cost and required precision, efficiency and phys-
ical representativeness with Fourier sinusoidal basis. The
most used approach formulates the Fourier mapping in the
irregular case as an inverse problem:

d = F D =⇒ D = F −1 d (1)

where d, D, and F , respectively, stand for the acquired
data, its Fourier spectrum and a matrix with Fourier ba-
sis (complex exponentials) took at the irregular positions
where d was acquired. That is, F plays the typical role
of an irregular ”inverse” discrete Fourier transform but, for
the sake of simplicity, let’s refer to F simply as a irregular
Discrete Fourier transform (IDFT).

One of the major limitations on the Fourier approach for
interpolation is the way it scales for multidimensional func-
tions in relatively small problems. In seismic applications,
an inverse for a 4D irregular discrete Fourier transform
may demand unavailable resources of CPU and memory

to compute in a systematic way.

Among with several initiatives to quantify the accuracy
achieved in interpolation of irregularly sampled, band lim-
ited or not, unidimensional or multidimensional functions
(see, for instance Eldar, 2006, and/or Guevara, et al.,
2010), we can also find successful attempts to represent
the Fourier spectrum of such functions (Duijndam et al.,
1999) and derived practical applications with regular trans-
forms, neglecting small departures from a regular embed-
ded grid acquisition (Naghizadeh and Sacchi, 2010). The
latter is well known as the Minimum Weighted Norm Inter-
polation method (MWNI).

This paper discusses an approximate expression for irreg-
ular Fourier transforms and their inverses, the conditions
where these approximations hold and the order of the im-
plied errors. It is then expected that such an approxima-
tion replaces the ”exact” and expensive one allowing for a
broader application of Fourier methods in interpolation and
many other related fields. Motivation for the search for such
an approximation is clearly the implied errors with MWNI
method which is supposed to fail for acquisitions with a
larger degree of irregularity. The scope here is limited to
the very engine for interpolation and supposedly can offer
new basis to address issues as cost and efficiency.

Due to limitations of this publication, the explanation here
will be essentially limited to the 1D case. Higher dimension
extensions will be indicated whenever appropriate. Also
only the case where the inverse is supposed to exist will be
addressed, postponing cases where the data have gaps
and point sampling accumulation for another publication.

An approximation for Irregular Discrete Fourier Trans-
forms

Discrete Fourier transforms (DFT) decompose a set of N
measurements d(xn), n = 0,N− 1, in a set of N sinusoidal
functions with weights D(km), m = 0,N−1. They are usually
written as,

d(xn) =
1√
N

N−1

∑
m=0

D(km)e−2iπkmxn . (2)

DFTs usually deal with evenly spaced sets of xn (∆x =
xn− xn−1 = Const.), and also regular sets of wave-numbers
km, m = 1,N, with ∆x∆k = 1/N. Under these conditions,
DFTs are orthogonal transformations for which very ef-
ficient algorithms are available. Let’s consider the case
where measurement points departs from a regular grid by
a small quantity: χn = xn + δn, xn an evenly spaced set of
points. From (2) we can write,

d(xn +δn) = 1√
N ∑

N−1
m=0 D(km)e−2iπkm(xn+δn)

= 1√
N ∑

N−1
m=0 D(km)e−2iπkmxn e−2iπkmδn .

(3)
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Now, since δn is small, we can approximate the exponential
with δn as limited sum of terms in a Taylor series as

d(xn +δn) u 1√
N ∑

N−1
m=0 D(km)e−2iπkmxn[

1−2iπδnkm−2π2δ 2
n k2

m +O(δn)2] (4)

In expression (4) there is an embedded regular DFT. Let’s
denote it as F and rewrite (4) in matrix form as,

d u
{

F−2iπδδδFk−2π
2
δδδ

2
nFk2

m + ...
}

D

where the series inside curly braces is a Taylor series for
the irregular discrete Fourier transform:

F =
∞

∑
j=0

(−2iπ) j

j!
δδδ

jFk j . (5)

The interest in an expression like (5) lies in the opportunity
to perform irregular DFTs efficiently (using FFTs), to ana-
lyze important features like invertibility and completeness
and also, to estimate an inverse under a given degree of
approximation. Matrices δδδ and k are diagonal when there
is no accumulation points and/or gaps and brings minor ad-
ditional CPU cost to operate.

The way (5) was derived implies that convergence is guar-
anteed as long as Taylor expansion converge. A require-
ment for the fast convergence of the series is that 2πδnkm <
1 for any n and m. This is usually assured since the great-
est k is 1/2∆x, the Nyquist wave-number for the embedded
discrete Fourier transform, and if one chooses

δn <
∆x
π

, ∀ n, n = 0,N−1 (6)

Figure 1 shows how singular values for different approxi-
mations compares to the exact F with greatest δ limited to
0.3∆x. With the proper degree of zoom it is possible to see
that the third degree approximation is already acceptable.

At this point, let’s mention that higher dimension transforms
can be treated much like the 1D case. A multidimensional
F can be approximated via a multidimensional Taylor se-
ries with convergence assured by relations like (6).

The approximate estimate for the Fourier spectrum of
irregularly sampled functions

Expression (5) allows one to estimate the inverse F −1 in an
approximate way. Let’s consider a least square inverse(1)
for F ,

F −1 =⇒ [F HF ]−1 F H . (7)

Considering the series in (5) and given that FHF = I, the
term inside brackets above takes the form,

F HF = I+2iπ (kFH
δδδ −δδδFk)+O(δ )2 . (8)

Hence, if (8) converges, one can write,

[F HF ]−1 = I−2iπ (kFH
δδδ −δδδFk)+O(δ )2 (9)

and the inversion for F as in (6) as well as the spectrum D
as in (1) are known up to a given degree of approximation
on powers of δ .

Again, deriving multidimensional analogues for (8) and (9)
is straightforward.

1When there are accumulation points and/or gaps the problem
is likely to be ill posed.

A synthetic application - Seismic data regularization

Seismic data are usually acquired in a almost regular way.
Departures from predetermined positions are kept as small
as possible. However, for many different reasons, it may
happen that trace locations do not correspond to the cen-
ter of bins in a regular grid and/or gaps and accumulation
bins are present. Seismic traces are sets of measurements
taken at a regular time interval. Thus, interpolation is de-
manded only for spatially regularizing seismic surveys.

Seismic trace interpolation usually requires a priori infor-
mation that can be provided in a easier way in the f − k
domain. Although this paper do not deal with ill posed prob-
lems where a priori information are a must, for compatibility
purposes, let’s keep the f −k approach. In this case, given
a set of irregularly acquired seismic data d(χn, t), where t
is the time taken at regular intervals dt, one would like to
estimate the f − k spectrum D(k, f ), where f is the tempo-
ral frequency. A preliminary regular temporal DFT can take
the acquired data to the space-frequency domain,

d̃(χn, f ) = DFTt f d(χn, t)

and the estimate of D(k, f ) follows directly from the appli-
cation of (1) as,

D(k, f ) = F −1 d̃(χn, f ) . (10)

Since F −1 is known up to a given order of approximation
(equations 5, 7, and 9), the estimate of D(k, f ) is immedi-
ate. A synthetic seismogram, irregularly sampled, is shown
at figure 2. Trace positioning was made so as no trace de-
parts from a regular grid by more than 0.3 ∆x. A sixth order
approximation for F −1 is free of errors greater than 0.003 in
this example. There is just one trace for each of the grid
points where an embedded DFT is defined.

The seismogram in figure 2 has 5 events: 4 linear and a
circle. The circle is there for curvature probing purposes.
Frequency content varies with dip so as to reduce (not elim-
inate) spatial aliasing. Amplitudes varies with frequency
content so that all events have the same visibility. One of
the 4 linear events is rather weak. Its small amplitude is es-
pecially interesting when additional, non linear constraints
(a priori information) are imposed and has no purpose at
this paper.

Summary and Conclusions

The possibility to approximately estimate the discrete
Fourier spectra of irregularly sampled functions was
demonstrated. Essentially a Taylor series expansion and
truncation, the Fourier spectra is determined in a given de-
gree of reliability which depends on how large measuring
positions depart from an embedded regular grid. The ap-
proximation is a limited sum of regular DFTs which com-
plexity is currently expressed as M N logN with M the num-
ber of DFTs used to reach an acceptable error and N is the
dimension of the problem. As compared to the N3 complex-
ity to compute the inverse of irregular Fourier transforms,
this approximation is expected to provide more usable ba-
sis for further developments in this field.
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Figure 1: A comparison between the singular values of the exact F and first, second, third, and sixth degree approximations. Recommended
a 400% of zoom.
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Figure 2: Seismograms with 5 events: 4 linear and a circle. They are slightly in alias showing that interpolation is tolerant to a mild degree of
aliasing. Top, irregularly sampled seismogram. Bottom, regularized seismogram.
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Figure 3: The f − k spectrum estimated with F−1 DFTt f . The circular event is dispersed since it corresponds to a linear combination of many
”straight lines”. The weak linear event demands special attention to be seen. Spatial aliasing is present. It can be also seen ”straight strips
of energy” with dips that are opposed to each of the 4 linear events. They belong to the boundary extensions (not shown in figure 2) used for
reducing boundary artifacts.
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